TP 09 Formation des roches magmatiques dans les zones de subduction

Dans les zones de subduction, le magma qui se forme est à l'origine de différentes roches : andésites, granodiorites. Ces roches sont très riches en silice et sont hydratées.

<u>Objectif de connaissance</u>: deux types de roches magmatiques se forment dans les zones de subduction au niveau de la plaque lithosphérique chevauchante ; ces roches magmatiques sont volcaniques ou plutoniques.

<u>Objectif de savoir-faire</u>: Utiliser le microscope polarisant pour déterminer la composition minéralogique d'une roche magmatique et sa structure, (réinvestissement de savoir-faire TPO2 du chap.I) et le logiciel Minusc.

Questions:

- comment montrer, à l'aide d'échantillons macroscopiques et microscopiques que deux types de roches magmatiques se forment au niveau de la plaque chevauchante des zones de subduction ?
- > comment montrer que les roches des zones de subduction sont riches en eau?

Composition minéralogique des roches magmatiques de subduction et du basalte.

Une roche magmatique est issue d'un refroidissement lent, en profondeur, est entièrement cristallisée. C'est une roche à structure grenue et elle appartient au groupe des roches magmatiques plutoniques.

Une roche magmatique issue d'une lave se refroidit rapidement : elle n'est pas entièrement cristallisée, une partie est amorphe formant une pâte vitreuse ou verre, et des cristaux sont de petite taille, souvent en forme de bâtonnet appelé microlithes : ce type de roche a une structure microlithique. On la qualifie de roche magmatique volcanique. (voir chap.l et Enseignement scientifique « Chap. Les cristaux, des édifices ordonnés ».

Etape A Proposition d'une stratégie pour répondre à la question et mise en œuvre du protocole

- Hypothèse de travail : andésite et granodiorite sont des roches magmatiques qui se sont solidifiées avec des vitesses de refroidissement différentes comme l'indique le document ressource.
- Nous allons comparer la structure de ces deux types de roches.
- Pour cela, nous allons observer des échantillons de roches à l'échelle macroscopique et à l'échelle microscopique. Si on observe qu'une des roches est entièrement grenue, alors sa vitesse de refroidissement a été lente. C'est une roche plutonique. Si on observe qu'une des roches est microlitique, alors sa vitesse de refroidissement a été rapide. C'est une roche volcanique.
- Pour savoir si ces roches sont riches en eau on peut utiliser le logiciel Minusc (voir TP08 du chapIII).

<u>Matériel</u>: Microscope polarisant, fiche de détermination des minéraux, échantillons macroscopiques et microscopiques d'andésite et de granodiorite.

logiciel Minusc http://www.librairiedemolecules.education.fr/outils/minusc/ et sa fiche technique (remarque : dans le menu « Fichier », vous prendrez successivement biotite et amphibole (voir tableau prof).

Etape B Communication des résultats et exploitation pour répondre à la question

Sous la forme de votre choix, présenter et traiter les informations pour qu'elles apportent les informations nécessaires à la résolution du problème. (capture d'image etc.)

Exploiter les résultats pour répondre à la question. « J'observe, je déduis, je conclus »